数学常见几何图形解题策略之辅助线的添加原则和方法!四边形+圆
初中 来源:网络 编辑:小新 2018-11-27 11:31:46

  平面几何图形的做题规律,以及每一种几何图形的性质和特殊隐含条件大家都额清楚,但是在做题的时候面对一个定性的几何图形,要根据这个题目的简单几句话是很难得到相关的信息的,所以在此就要借助辅助线的解体方法来解答。辅助线的基本做法每个同学都知道,但是将这几类图形整合起来的辅助线做法还是很有需要分享给大家的。下面是关于四边形和圆的辅助线做题规律和原则。

数学常见几何图形解题策略之辅助线的添加原则和方法!四边形+圆

  四边形中常见辅助线的添加

  特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需 要添加辅助线。下面介绍一些辅助线的添加方法。

  1. 和平行四边形有关的辅助线作法

  平行四边形是较常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

  (1) 利用一组对边平行且相等构造平行四边形

  (2)利用两组对边平行构造平行四边形

  (3)利用对角线互相平分构造平行四边形

  2. 与矩形有辅助线作法

  (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题

  (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.

  3. 和菱形有关的辅助线的作法

  和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.

  (1)作菱形的高

  (2)连结菱形的对角线

  4. 与正方形有关辅助线的作法

  正方形是一种的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正 方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线

  5. 与梯形有关的辅助线的作法

  和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:

  (1)作一腰的平行线构造平行四边形和特殊三角形

  (2)作梯形的高,构造矩形和直角三角形

  (3)作一对角线的平行线,构造直角三角形和平行四边形

  (4)延长两腰构成三角形

  (5)作两腰的平行线等

  圆中常见辅助线的添加

  1. 遇到弦时(解决有关弦的问题时)

  常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

  作用:

  ① 利用垂径定理

  ② 利用圆心角及其所对的弧、弦和弦心距之间的关系

  ③ 利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量

  2. 遇到有直径时,常常添加(画)直径所对的圆周角

  作用:利用圆周角的性质得到直角或直角三角形

  3. 遇到90度的圆周角时 ,常常连结两条弦没有公共点的另一端点

  作用:利用圆周角的性质,可得到直径

  4. 遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点

  作用: ①可得等腰三角形

  ②据圆周角的性质可得相等的圆周角

  5. 遇到有切线时,常常添加过切点的半径(连结圆心和切点)

  作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形

  常常添加连结圆上一点和切点

  作用:可构成弦切角,从而利用弦切角定理。

  6. 遇到证明某一直线是圆的切线时

  (1) 若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。

  作用:若OA=r,则l为切线

  (2) 若直线过圆上的某一点,则连结这点和圆心(即作半径)

  作用:只需证OA⊥l,则l为切线

  (3) 有遇到圆上或圆外一点作圆的切线

  7. 遇到两相交切线时(切线长)

  常常连结切点和圆心、连结圆心和圆外的一点、连结两切点

  作用:据切线长及其它性质,可得到

  ① 角、线段的等量关系

  ② 垂直关系

  ③ 全等、相似三角形

  8. 遇到三角形的内切圆时

  连结内心到各三角形顶点,或过内心作三角形各边的垂线段

  作用:利用内心的性质,可得

  ① 内心到三角形三个顶点的连线是三角形的角平分线

  ② 内心到三角形三条边的距离相等

  9. 遇到三角形的外接圆时,连结外心和各顶点

  作用:外心到三角形各顶点的距离相等

  10. 遇到两圆外离时(解决有关两圆的外、内公切线的问题)

  常常作出过切点的半径、连心线、平移公切线,或平移连心线

  作用: ①利用切线的性质; ②利用解直角三角形的有关知识

  11. 遇到两圆相交时 常常作公共弦、两圆连心线、连结交点和圆心等

  作用: ① 利用连心线的性质、解直角三角形有关知识

  ② 利用圆内接四边形的性质

  ③ 利用两圆公共的圆周的性质

  ④ 垂径定理

  12.遇到两圆相切时

  常常作连心线、公切线

  作用: ① 利用连心线性质

  ② 切线性质等

  13. 遇到三个圆两两外切时

  常常作每两个圆的连心线

  作用:可利用连心线性质

  14. 遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时

  常常添加辅助圆

  作用:以便利用圆的性质

数学常见几何图形解题策略之辅助线的添加原则和方法!四边形+圆

*本文内容来源于网络,由秦学教育整理编辑发布,如有侵权请联系客服删除!
文章标签: 数学
上一篇: 法国大革命爆发的历史起因是什么?革命的较终结局怎样? 下一篇:太平天国运动缘何失败?窥见历史的必然性和后世的教训?
预约领取试听课
我们为您准备了
  • 学业水平系统测评
  • 个性化针对教学计划
  • 线下逆袭试听课
  • 系列学科学习资料
确认预约
热门活动
补习学校
补习学校
考前冲刺
考前冲刺
艺考冲刺  不一样的艺考培训
艺考冲刺 不一样的艺考培训
个性化一对一  小班课辅导
个性化一对一 小班课辅导
  • 热门课程
  • 热门资讯
  • 热门资料
  • 热门福利
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料